

密级状态: 绝密() 秘密() 内部() 公开(√)

RK3399 人脸算法 SDK 开发指南

(技术部,图形显示平台中心)

文件状态:	当前版本:	V1. 0
[]正在修改	作 者:	杨华聪
[√] 正式发布	完成日期:	2018-08-08
	审 核:	熊伟
	完成日期:	2018-08-08

福州瑞芯微电子股份有限公司

Fuzhou Rockchips Semiconductor Co., Ltd (版本所有,翻版必究)

更新记录

版本	修改人	修改日期	修改说明	核定人
V1.0	杨华聪	2018-08-08	初始版本	熊伟

目 录

1	主要	·功能说明	. 4
2	系统	· 在依赖说明	. 4
	2.1	ANDROID 平台依赖	
3		应用	
		3指标	
4	1生形	绀f怀	3
	4.1	人脸检测性能	5
	4.2	人脸识别性能	5
5	授权	7.说明	6
6	SDK	【使用说明	. 7
	6.1	SDK 库引入	7
	6.2	初始化	7
	6.3	人脸检测	8
	6.4	人脸识别	8
	6.5	API 参考指南	8

1 主要功能说明

RK3399 人脸算法 SDK 是基于 Rockchip 自主研发的人脸检测、追踪和识别算法模型。采用传统算法与深度学习相结合的方法,具有精度高、速度快的特点。SDK 充分利用 RK3399 CPU/GPU 强大的计算能力进行离线计算,无需进行网络传输。

SDK 提供的功能主要有:

- 1) 人脸检测与跟踪:对静态图片或者视频流进行快速人脸位置检测和关键点信息获取。
- 2) 人脸识别: 提供快速和精确两种模式,满足连续识别、身份验证等不同场景的需求。

2 系统依赖说明

2.1 Android 平台依赖

本 SDK 提供的库和应用程序在 RK3399 的 Android Nougat 和 Android Oreo 上测试通过。 SDK 运行需要满足以下运行环境要求:

Android 版本 Android 7.1、Android 8.1 平台 RK3399
Mali 驱动版本 r14p0、r18p0

表 1 SDK 运行环境

注: Mali 驱动版本可以通过在设备上执行 "getprop | grep mali" 命令获得

3 示例应用

SDK 中附带的示例应用能够帮助客户评估 SDK 的基本功能和理解 SDK 接口,客户可以直接基于示例应用进行修改或参考开发。

Android 示例应用使用方法如下:

- 1) 解压 samples 目录下的示例应用压缩包,并用 Android Studio 打开;
- 2) 在代码中找到 setAuthorizationKey("/sdcard/key.txt")方法的调用, 修改 key 文件路径;
- 3) 确保开发板有带摄像头。修改 MainActivity.java, 单目摄像头只需修改

RGB_CAMERA_ID 为相应的 Camere;双目摄像头需要设置 CAMERA_NUM=2,另外 RGB_CAMERA_ID 和 INFRARED_CAMERA_ID 分别设置为相应的 Camera;

4) 将开发板设备用 USB 连接到 PC,点击 Android Studio 运行示例应用。

注: 授权 key 文件的获取请参考——5 授权说明。

4 性能指标

4.1人脸检测性能

SDK 提供的人脸检测接口的性能参数如下表所示:

 适应角度
 平面内人脸左右旋转±30°

 侧脸左右偏转±60°
 侧脸上偏转 60°

 侧脸下偏转 45°
 6m(测试摄像头 FOV=60°)

 检测速度
 70ms

 精度 (FDDB 标准数据集)
 88.6%(FP=100)

表 2 人脸检测性能

注:

- 1) 图像质量较差时,支持的检测角度会减小。
- 2) 最小检测人脸可以配置,当最小检测人脸设为更小时,检测速度会下降,但最大检测距离 会上升。
- 3) 最大检测距离与摄像头 FOV 等参数有关。
- 4) 检测速度会随人数增多而下降。

4.2人脸识别性能

SDK 提供的人脸识别接口支持快速和精确两种模式,性能参数分别如下表所示:

表 3 快速模式识别性能

识别角度	平面内人脸左右旋转±30°
	侧脸左右偏转±60°

	侧脸上偏转 60°
	侧脸下偏转 45°
识别距离	30cm~3m
识别速度	大约 68ms
识别精度 (LFW 标准数据集)	99.03% (±0.36%)
认假率	<0.5%
拒真率	<1.4%

表 4 精确模式识别性能

	侧脸上偏转 60°
	侧脸下偏转 45°
识别距离	30cm~3m
识别速度	大约 390ms
识别精度(LFW 标准数据集)	99.48% (±0.29%)
认假率	<0.5%
拒真率	<1%

注:

- 1) 快速模式和精确模式得到的人脸特征不能相互进行比较。
- 2) 以上识别速度是在 RK3399 平台上将 CPU 和 GPU 定频最高测得。

5 授权说明

人脸算法 SDK 需要获得授权后才能使用,客户首先需要向对应业务提出申请,获得授权使用的 user 和 passwd (每个用户授权会有次数限制),然后通过授权工具包中的工具进行授权就可以正常使用。人脸识别授权流程如下所示:

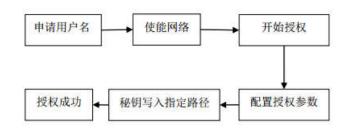


图 1 人脸识别授权流程

具体配置方法请参考授权工具包中的说明文档。在获得秘钥文件后,修改应用中设置授权 key 的路径,就可以正常进行人脸识别。需要注意的是,生成的秘钥是临时保存在 SD 卡上,如果用户格式化 SD 卡,会删除秘钥,进而导致 SDK 运行失败。这种情况下需要重新授权。对于临时调试使用的秘钥,秘钥生成以后建议客户备份一份到电脑,即使以后不小心格式化 SD,也能够还原之前的秘钥继续调试。

6 SDK 使用说明

6.1 SDK 库引入

首先将 librockface-1.0.0.aar 拷贝至应用代码工程的 app/libs 目录下,然后在 app/build.gradle 中添加引用:

```
repositories {
    flatDir {
        dirs 'libs'
    }
}
dependencies {
    ...
    api(name:'librockface-1.0.0', ext:'aar')
}
```

而后在 AndroidManifest.xml 文件中添加以下权限:

```
<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission
android:name="android.permission.READ_EXTERNAL_STORAGE" />
```

6.2 初始化

人脸 SDK 的核心类为 RockFace, 首先需要创建该对象,并进行初始化。

// 创建对象

RockFace rockface = new Rockface();
// 设置授权 key 文件
rockface.setAuthorizationKey("/sdcard/key.txt");
// 初始化,传入当前 Context 对象,设置输入图像大小为 640x480
rockface.init(getApplicationContext(), 640, 480);

6.3 人脸检测

人脸检测只需调用 RockFace 类的 detect 方法即可,传入图像原始数据、图像像素格式以及是否使能跟踪。方法返回所有的检测结果,每个检测结果为一个 DetectResult 类,其中包括了人脸检测分数、检测框位置、人脸关键点信息等,都可以通过该类相应的方法获取。

ArrayList<DetectResult> detectResults =rockface.detect(buffer, Rockface.PIXEL_FORMAT_BGR888, false);

6.4人脸识别

通过调用 RockFace 类的 recognize 方法进行人脸识别,传入图像的原始数据、图像像素格式、检测结果以及识别模式,即可得到一个 FaceResult 输出。FaceResult 中包含了识别得到的人脸特征,可以通过相应方法获取保存。

6.5 API 参考指南

详细的接口描述请参考 docs/javadoc 目录下的 API 文档